
Hierarchical Roofline Analysis on GPUs

Charlene Yang
Lawrence Berkeley National Laboratory

ECP 2020, Houston

Outline

• Hierarchical Roofline on NVIDIA GPUs
– L1, L2, HBM, System Memory

• Methodology for Roofline Data Collection
– Machine characterization: peak bandwidth and peak GFLOP/s
– Application characterization: FLOPs, bytes, runtime

• Two Examples
– GPP from BerkeleyGW, and HPGMG kernel

2

This methodology
can be extended
to other GPUs,

and other
instruction types!

GPU Architecture: Tesla V100

FP32 units 64 INT32 units 64

FP64 units 32 Tensor Cores 8

Registers 256KB Unified Cache 128KB

Max Threads 2048 Thread Blocks 32

80 SMs

12800 CUDA Cores 16/32GB HBM2

640 Tensor Cores 900GB/s HBM2

3

GPU Architecture: Tesla V100

• Logical memory spaces (green)
• Physical memory spaces (blue) [Roofline]

– Level 1
– Level 2
– HBM (DRAM)
– PCIe/NVLink

3

Goal: Construct Hierarchical Roofline
To construct a Roofline on NVIDIA GPUs
• that incorporates the full memory hierarchy

– L1, L2, HBM, System Memory (NVLink/PCIe)

• also instruction types, data types…
– FMA/no-FMA/IntOps/…
– FP64, FP32, FP16, …
– CUDA core/Tensor core
– …

4

Methodology to Collect Roofline Data

Machine Characterization

How to get the ceilings?
• compute and bandwidth

Theoretical vs Empirical

Empirical Roofline Toolkit (ERT)
• runs micro benchmarks
• More Realistic
• power constraints, etc

5

Machine Characterization

• Empirical Roofline Toolkit (ERT)
– Different than the architecture specs, MORE REALISTIC
– Reflects actual execution environment (power constraints, etc)
– Sweeps through a range of configurations, and statistically stable

o Data elements per thread
o FLOPs per data element
o Threadblocks/threads
o Trails per dataset
o etc

Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

job script

./ert config.txt

ert (Python)

create directories
loop over ERT_FLOPS, ERT_GPU_BLOCKS/THREADS

call driver, kernel

config.txt

ERT_FLOPS 1,2,4,8,16,32,64,128,256
ERT_GPU_BLOCKS 80,160,320,640,1280,2560
ERT_GPU_THREADS 64,128,256,512,1024
ERT_MEMORY_MAX 1073741824
ERT_WORKING_SET_MIN 128
ERT_TRIALS_MIN 1
...

Driver.c (uses some Macros from config.txt)

initialize MPI, CUDA
loop over dataset sizes <= ERT_MEMORY_MAX

loop over trial sizes >= ERT_TRIALS_MIN
cudaMemcpy
start timer
call kernel
end timer

Kernel.c

loop over ntrails
distribute dataset on threads and each

computes ERT_FLOPS

Kernel.h

ERT_FLOPS=1: a = b + c
ERT_FLOPS=2: a = a x b + c

job script
• submit the job and run it

config script
• set up ranges of parameters

Driver.c
• setup
• call kernels
• loop over parameters

Kernel.c
• actual compute
• customizable

ERT Configuration

Empirical Roofline Toolkit (ERT). https://bitbucket.org/berkeleylab/cs-roofline-toolkit/

• ERT can’t detect all the ceilings yet - IN DEVELOPMENT!

• Theoretical compute ceilings on V100:
– FP64 FMA: 80 SMs x 32 FP64 cores x 1.53 GHz x 2 = 7.83 TFLOP/s
– FP64 No-FMA: 80 SMs x 32 FP64 cores x 1.53 GHz = 3.92 TFLOP/s

• Theoretical memory bandwidths on V100:
– HBM: 900 GB/s
– L2: ~4.1 TB/s

Bad News:
• you may never achieve 7.8 TFLOP/s
Good News:
• you may be closer to the ceiling than you think

Machine Characterization

10%

10%

8%

28
%

Voltar at UOregon

8

Require three raw measurements:
• Runtime
• FLOPs
• Bytes (on each cache level)
to calculate AI and GFLOP/s:

Application Characterization

Performance = +,-./0 FLOPs
Runtime

Arithmetic Intensity = +,-./0 FLOPs
+,-./0 Data Movement

(y: GFLOP/s)

(x: FLOPs/Byte)

9

Where to put these dots?

Application Characterization

Currently the methodology is based on nvprof

But we are working with NVIDIA on an Nsight-based
methodology!!

10

Application Characterization
• Runtime:

– Time per invocation of a kernel
nvprof --print-gpu-trace ./application

– Average time over multiple invocations
nvprof --print-gpu-summary ./application

• FLOPs:
– CUDA Core: Predication aware and complex-operation aware (such as divides)

nvprof --kernels ‘kernel_name’ --metrics ‘flop_count_xx’
./application e.g. flop_count_{dp/dp_add/dp_mul/dp_fma, sp*, hp*}

– Tensor Core: (more details later)
--metrics tensor_precision_fu_utilization
0-10 integer range, 0-0, 10-125TFLOP/s; multiply by run time -> FLOPs

11

Application Characterization
• Bytes for different cache levels in order to construct hierarchical Roofline:

– Bytes = (read transactions + write transactions) x transaction size
– nvprof --kernels ‘kernel_name’ --metrics ‘metric_name’

./application

• Note: surface and texture transactions are ignored here for HPC applications

Level Metrics Transaction
Size

First Level Cache*

gld_transactions, gst_transactions,
atomic_transactions, local_load_transactions,
local_store_transactions, shared_load_transactions,
shared_store_transactions

32B

Second Level Cache l2_read_transactions, l2_write_transactions 32B
Device Memory dram_read_transactions, dram_write_transactions 32B
System Memory system_read_transactions, system_write_transactions 32B

12

Example Output

[cjyang@voltar source]$ nvprof --kernels "1:7:smooth_kernel:1" --metrics
flop_count_dp --metrics gld_transactions --metrics gst_transactions --
metrics l2_read_transactions --metrics l2_write_transactions --metrics
dram_read_transactions --metrics dram_write_transactions --metrics
sysmem_read_bytes --metrics sysmem_write_bytes ./hpgmg-fv-fp 5 8

• Export to CSV: --csv -o nvprof.out

13

context : stream : kernel : invocation

Plot Roofline with Python

• Calculate Arithmetic Intensity and GFLOP/s performance
– x coordinate: Arithmetic Intensity
– y coordinate: GFLOP/s performance

• Plot Roofline with Python Matplotlib
– Example scripts:
– https://gitlab.com/cyang.lbl/roofline-on-nvidia-gpus/tree/master/ExamplePlots
– Tweak as needed for more complex Rooflines

Performance = +,-./0 FLOPs
Runtime , Arithmetic Intensity = +,-./0 FLOPs

+,-./0 Data Movement(GFLOP/s) (FLOPs/Byte)

14

https://gitlab.com/cyang.lbl/roofline-on-nvidia-gpus/tree/master/ExamplePlots

Plot Roofline with Python

• Quick example: plot_roofline.py data.txt

• Accepts space-delimited list for values
• Use quotes to separate names/labels

data.txt

all data is space delimited
memroofs 14336.0 2996.8 828.758
mem_roof_names ‘L1’ ‘L2’ ‘HBM’
comproofs 7068.86 3535.79
comp_roof_names ‘FMA’ ‘No-FMA’

omit the following if only plotting roofs
AI: arithmetic intensity; GFLOPs: performance
AI 0.87 2.25 2.58
GFLOPs 2085.756683
labels ‘Kernel’

15

Recap: Methodology to Construct Roofline

1. Collect Roofline ceilings
– ERT: https://bitbucket.org/berkeleylab/cs-roofline-toolkit
– compute (FMA/no FMA) and bandwidth (DRAM, L2, …)

2. Collect application performance
– nvprof: --metrics, --events, --print-gpu-trace
– FLOPs, bytes (DRAM, L2, …), runtime

3. Plot Roofline with Python Matplotlib
– arithmetic intensity, GFLOP/s performance, ceilings
– example scripts: https://gitlab.com/cyang.lbl/roofline-on-nvidia-gpus/

16

Roofline Analysis: Two Examples

Example 1: GPP
• GPP (General Plasmon Pole) kernel from BerkeleyGW (Material Science)
• Small problem size: 512 2 32768 20

• Tensor-contraction, abundant parallelism, large reductions
• Low FMA counts, divides, complex double data type, HBM data 1.5GB

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadIdx.x
do iw = 1, nw #unrolled

compute; reductions

Pseudo Code

18

Example 1: GPP
• Highly parameterizable

1. Varying nw from 1 to 6 to increase arithmetic intensity
• FLOPs increases, but data movement stays (at least for HBM)

2. Compiling with and without FMA to study impact of instruction mix
• -fmad=true/false

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do ig = 1, ncouls #threadsIdx.x
do iw = 1, nw #unrolled

compute; reductions

Pseudo Code

19

Example 1: GPP

• Highly parameterizable

3. Striding ig loop to analyze impact of memory coalescing
• Split ig loop to two loops and place the ‘blocking’ loop outside

do band = 1, nbands #blockIdx.x
do igp = 1, ngpown #blockIdx.y

do igs = 0, stride - 1
do ig = 1, ncouls/stride #threadIdx.x

do iw = 1, nw #unrolled
compute; reductions

Stride 2
Pseudo Code

20

Example 1: GPP Analysis

• Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes
– GPP is HBM bound at low nw’s and compute bound at high nw’s
– FLOPs ∝ nw
– HBM bytes: constant
– L2 bytes: increasing at " > 1
– L1 bytes: constant

• Hierarchical Roofline captures
more details about cache locality

21

Example 1: GPP Analysis

• HBM Roofline, i.e. bytes are HBM bytes
– No-FMA performance converges

to no-FMA ceiling, but FMA
performance is still far from
the FMA ceiling

– Not reaching FMA ceiling due
to lack of FMA instructions

22

Example 1: GPP Analysis
• At nw=6, GPP has of FMA instructions

• Expected performance is

of peak

But at nw=6, GPP only achieves 66%

• Other FP/non-FP instructions may
be taking up the instruction
issue/execution pipeline

• Roofline captures effects of
instruction mix

! = FMA FP64 instr.
FMA FP64 instr. + non−FMA FP64 instr. = 23%

5 = α × 2 + (1 − !)
2 = <3%

23

Example 1: GPP Analysis
• Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes

– L1/L2 bytes doubles from stride 1 to 2, but stays almost constant afterwards
– at nw=6, GPP moves from compute bound to bandwidth bound
– Eventually all converge to HBM

• Roofline captures effects of

suboptimal memory coalescing

24

Example 2: HPGMG
• HPGMG (High-performance Geometric Multigrid) from Adaptive Mesh Refinement code
• https://bitbucket.org/nsakharnykh/hpgmg-cuda

• Stencil code, F-cycles and V-cycles, GSRB smoother kernel (Gauss-Seidel Red-Black)

HPGMG. https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/

https://bitbucket.org/nsakharnykh/hpgmg-cuda

Example 2: HPGMG
• Hybrid GPU and CPU code

– Example: hpgmg-fv 7 8
– 1283 box x 8, Level 5-8 run on GPU, Level 1-4 on CPU

• Three versions of GSRB kernel
– GSRB_FP, GSRB_BRANCH, GSRB_STRIDE2

29

Example 2: HPGMG

• GSRB_BRANCH has half the FLOPs as GSRB_FP but the same HBM/L1/L2 bytes

GSRB_FP

for(int k=klo; k<(klo+kdim); k++){
const int ijk = i + j*jStride + k*kStride;
const double *__restrict__ RedBlack =

level.RedBlack_FP + ghosts*(1+jStride)
+((k^color000)&1)*kStride;

const double Ax = apply_op_ijk();
const double lambda = Dinv_ijk();
const int ij = i + j*jStride;
xo[ijk] = X(ijk) + RedBlack[ij]*lambda*(rhs[ijk]-

Ax);
}

GSRB_BRANCH

for(int k=klo; k<klo+kdim; k++){
const int ijk = i + j*jStride + k*kStride;
if(((i^j^k^color000^1)&1)){
const double Ax = apply_op_ijk();
const double lambda = Dinv_ijk();
xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);

}else{
xo[ijk] = X(ijk);

}
}

1 0 1 0 1 0 1 0

8 elements

1 1 1 1

8 elements

8 threads 8 threadsSweep

30

• GSRB_STRIDE2 should have the same FLOPs as GSRB_BRANCH, but more
bytes? More writes than GSRB_BRANCH.

Example 2: HPGMG
GSRB_STRIDE2

for(int k=klo; k<klo+kdim; k++){
i = ilo +!((ilo^j^k^color000)&1) + threadIdx.x*2;
if(i < ilo+idim){

const int ijk = i + j*jStride + k*kStride;
xo[ijk] = X(ijk);

}
i = ilo + ((ilo^j^k^color000)&1) + threadIdx.x*2;
if(i < ilo+idim){

const int ijk = i + j*jStride + k*kStride;
const double Ax = apply_op_ijk();
const double lambda = Dinv_ijk();
xo[ijk] = X(ijk) + lambda*(rhs[ijk]-Ax);

}
}

!1 0 !1 0 !1 0 !1 0

8 elements

4 threads

31

• GSRB_FP, Hierarchical Roofline, i.e. bytes are HBM, L2 and unified L1 cache bytes

• Highly bandwidth bound, inherent to stencil codes
• From Level 5 to Level 8:

– HBM AI increases due to
better Surface: Volume ratio

– Roughly constant L1/L2 AI
due to stencils being ‘tiled’

• Roofline captures computational
characteristics of the algorithm

Example 2: HPGMG Analysis

32

Example 2: HPGMG Analysis
GSRB_FP vs. GSRB_BRANCH
• FLOPs halves, bytes doesn’t change, thus AI halves and GFLOP/s halves
• Runtime is comparable even though GFLOP/s has halved
• Same number of threads occupied, only with half predicated in GSRB_BRANCH

33

Example 2: HPGMG Analysis
GSRB_BRANCH vs. GSRB_STRIDE2
• Extra writes in GSRB_STRIDE2 cause more capacity misses in L2, leading to AI

drop on L2 and DRAM, starting from Level 7 (data size ≈L2 cache size)
• Runtime almost doubled and GFLOP/s halved

34

!Rooflin
e

captures all o
f

this!

Summary
• An effective methodology to construct hierarchical Roofline on NVIDIA GPUs

– ERT for machine characterization
– nvprof for application characterization

• Two examples demonstrated the value of this methodology and its ability to
understand various aspects of performance on NVIDIA GPUs
– cache locality, instruction mix, memory coalescing, reduced precision and

Tensor Cores
– GPP from BerkeleyGW, and HPGMG kernel

36

Acknowledgement

• This material is based upon work supported by the Advanced Scientific
Computing Research Program in the U.S. Department of Energy, Office
of Science, under Award Number DE-AC02-05CH11231.

• This material is based upon work supported by the DOE RAPIDS SciDAC
Institute.

• This research used resources of the National Energy Research Scientific
Computing Center (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy under contract DE-AC02- 05CH11231.

Thank You

